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PARAMETER SENSITIVITY AND

UNCERTAINTY IN SWAT�:
A COMPARISON ACROSS FIVE

USDA‐ARS WATERSHEDS

T. L. Veith,  M. W. Van Liew,  D. D. Bosch,  J. G. Arnold

ABSTRACT. The USDA‐ARS Conservation Effects Assessment Project (CEAP) calls for improved understanding of the
strengths and weaknesses of watershed‐scale water quality models under a range of climatic, soil, topographic, and land use
conditions. Assessing simulation model parameter sensitivity helps establish feasible parameter ranges, distinguish among
parameters having regional versus universal interactions, and ensure that one model process does not compensate for another
due to poor parameter settings. The Soil and Water Assessment Tool (SWAT) parameter sensitivity and autocalibration module
was tested on two northern and three southern USDA‐ARS experimental watersheds. These previously calibrated watersheds
represent a range of climatic, physiographic, and land use conditions present in the U.S. Sixteen parameters that govern basin,
snow accumulation/melt, surface, and subsurface response in the model were evaluated. Parameters governing surface runoff
due to rainfall were found most sensitive overall, while parameters governing groundwater were the least sensitive. Surface
runoff parameters were found most sensitive for areas with high evaporation rates and localized thunderstorms. Parameters
from all categories were important in areas where precipitation includes both rainfall and snowfall. Differences in model
performance were noticeable on a climatic basis; SWAT generally predicted streamflow with less uncertainty in humid
climates than in arid or semi‐arid climates. Study findings can be used to determine appropriate parameter ranges for
ungauged watersheds of similar characteristics.
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ecent advances in computing capability and Geo‐
graphical Information Systems (GIS) have led to
increasingly sophisticated watershed‐scale mod‐
els that are capable of addressing a host of issues

related to water quality concerns: flood control, low flow
management,  and water availability. These physically based,
distributed parameter models incorporate components for
evapotranspiration,  transmission losses, overland and chan‐
nel flow, and surface and subsurface runoff on a watershed
scale. However, because hydrologic simulation models are
necessarily inexact representations of water movement in the
natural system, they are often calibrated to available mea‐
sured data. While this process often minimizes error between
the model output and the data collected in the field, it is com‐
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plicated by a large number of non‐measurable parameters or
coefficients that need to be estimated (Moriasi et al., 2007;
Van Liew et al., 2005; White and Chaubey, 2005).

With widening applications of watershed‐scale models,
there is an increasing need to evaluate the accuracy of model
simulations. Because calibration parameters and their feasi‐
ble value ranges are sometimes selected in the exploratory
modeling stage, they may not closely represent unique field
conditions occurring during the study period of a particular
watershed; conversely, they may be representative of only
that time period and unique conditions. Moreover, certain
processes that are improperly modeled may lead to situations
in which other components of the model are forced to com‐
pensate for the model shortcomings (Haan, 1989).

Assessing parameter sensitivity is important in establish‐
ing feasible parameter ranges for calibration and for distin‐
guishing parameters that have regional impacts and/or
interactions from those that have a universal impact. For ex‐
ample, accurate estimation of lag time for surface water
across a watershed is relevant to all watersheds, whereas es‐
timation of snow melt parameters is relevant only in colder
regions. Evapotranspiration parameters are relevant in both
cold and warm climates, but in colder climates they may be
particularly more important during some seasons than others.
A good understanding of both regional and universal parame‐
ter sensitivity, as relevant to the study watershed, helps en‐
sure that one model process does not erroneously attempt to
compensate for another as a result of poor parameter settings.
User interfaces for watershed models are beginning to in‐
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clude autocalibration components that require little user in‐
teraction. This greatly simplifies parameter selection, but it
also increases potential for erroneous parameter settings if a
user selects default or example values without a clear under‐
standing of the meanings of those values. As autocalibration
techniques become more widely used and more practical due
to faster computer runtimes, an adequate understanding of
model parameters and adequate guidance toward appropriate
parameter values and relationships become increasingly vi‐
tal.

The Soil and Water Assessment Tool (SWAT) is a river ba‐
sin model developed to predict the impact of land manage‐
ment practices on water, sediment, and agricultural chemical
yields in large watersheds with varying soils, land‐use, and
management  conditions over long periods of time (Arnold et
al., 1998). The SWAT model has been applied to watersheds
throughout the world. In the U.S., the model has been exten‐
sively used to develop total maximum daily loading plans
and, more recently, was selected as one of the key compo‐
nents of the Conservation Effects Assessment Project being
conducted by the USDA (USDA‐NRCS, 2006). Current op‐
tions in SWAT include tools for analyzing parameter sensitiv‐
ity, calibrating model parameters, and assessing parameter
uncertainty (Van Griensven, 2002). Besides providing a
labor‐saving method for model calibration, the tools for as‐
sessing parameter sensitivity and uncertainty enable practi‐
tioners to identify which parameters in the model are most
important in governing hydrologic response and to determine
the appropriate ranges over which parameters values are suit‐
able for model simulations. However, these increasing levels
of automation require increased awareness of the possible un‐
certainty and errors associated with incorrect parameter
selection.

The objectives of this study were to (1) identify how sensi‐
tivity of hydrologic parameters varied among watersheds
with distinctly different climatic conditions, (2) quantify the
uncertainty of the calibrated parameters with respect to the
calibrated solution set, and (3) evaluate the prediction uncer‐
tainty of the flow hydrograph due to parameter uncertainty.
The investigation was conducted using data from five unique
USDA‐ARS experimental watersheds located throughout the
U.S.: Mahantango Creek in Pennsylvania, Little River in
Georgia, Little Washita River in Oklahoma, Walnut Gulch in
Arizona, and Reynolds Creek in Idaho. Regional climatic dif‐
ferences among these watersheds have resulted in noticeable
variations in model performance despite use of an autocal‐
ibration tool (Van Liew et al., 2007). The current study ex‐
pands on the work of Van Liew et al. (2007) by evaluating the
impact of these climatic differences on model parameter sen‐
sitivity and uncertainty.

METHODS AND MATERIALS
The SWAT model was used to estimate hydrologic flow

conditions of the five test watersheds. The impact of input pa‐
rameter fluctuations on output variance was evaluated using
the sensitivity analysis component within the model (Van
Griensven, 2002). The simulated streamflow for each wa‐
tershed was then compared to the measured flow using the au‐
tocalibration optimization routine within SWAT (Van
Griensven and Bauwens, 2003). This process identified
“good” parameter uncertainty ranges for 16 hydrologic pa‐

rameters. The resulting “good” parameter ranges for each
watershed were evaluated and compared across watersheds.
Additionally, hydrographs resulting from the “good” param‐
eter ranges were evaluated and compared. This information
helps establish suggested initial parameters values for un‐
gauged watersheds of similar characteristics.

TEST WATERSHEDS

The test watersheds were established in compliance with
U.S. Senate Document 59 to depict downstream, off‐site im‐
pacts of watershed practices. The test watersheds represent a
range in climatic, physiographic, and land use characteristics
(fig. 1, table 1). Average monthly streamflow over a three‐ to
five‐year period was previously calibrated against measured
data for each watershed using mean square error, percent
bias, and visual comparison, as detailed by Van Liew et al.
(2007). The resulting variations in hydrologic response pro‐
vide a spectrum of data for testing the robustness of SWAT in
simulating hydrologic responses and of the autocalibration
programs in determining parameter uncertainty.

Mahantango Creek in Pennsylvania
Located about 80 km northeast of Harrisburg, Pennsylva‐

nia, WE‐38, a 7.2 km2 experimental subwatershed of the Ma‐
hantango Creek watershed, is typical of upland agricultural
watersheds within the nonglaciated, folded and faulted, Ap‐
palachian Valley and Ridge Physiographic Province (Veith et
al., 2005). Mature forest covers the dominant ridge to the
north, while cropland and pasture dominate the rolling hills
of the watershed interior. Elevation ranges from about 490 m
(msl) on the ridge top down to 160 m (msl) at the watershed
outlet. Regional climate is temperate and humid, with a long‐
term average annual precipitation of 1100 mm based on data
collected by the USDA‐ARS from 1967 to the present. Up‐
wards of 50% of annual streamflow is derived from ground‐
water return flow (Gburek et al., 1986), which in turn is
controlled by a shallow zone of intensively fractured and
weathered bedrock (Gburek and Folmar, 1999). The wa‐
tershed is characterized by shallow, fragipan soils in near‐
stream areas, and deep, well‐drained soils in the uplands.
Land use types consist of pasture (38%), forest (34%), mixed
croplands (26%), and farmsteads (2%).

Little River in Georgia
The 330 km2 subwatershed B of Little River is located in

south central Georgia about 1 km north of Tifton, Georgia.
Climate in the region is characterized as humid subtropical
with long, warm summers and short, mild winters, with an av‐
erage annual precipitation of about 1215 mm based on data
collected by the USDA‐ARS from 1971 to 2004 (Bosch et al.,
2006). The Little River watershed landscape is dominated by
a dense dendritic network of stream channels bordered by
riparian forest wetlands and upland areas devoted mostly to
agricultural uses. The region has low topographic relief and
is characterized by broad, flat alluvial floodplains, river ter‐
races, and gently sloping uplands (Sheridan, 1997). Soils on
the watershed are predominantly sands and sandy loams with
high infiltration rates. Since surface soils are underlain by
shallow, relatively impermeable subsurface horizons, lateral
and shallow aquifer flows contribute significantly to stream‐
flow, while deep seepage and recharge to regional groundwa‐
ter systems are impeded (Sheridan, 1997). Land use types
include forest (65%), cropland (30%), rangeland and pasture
(2%), wetland (2%), and miscellaneous (1%).
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Figure 1. Locations and relative sizes of the five USDA‐ARS study watersheds.

Little Washita River in Oklahoma
The 160 km2 subwatershed 526 of the Little Washita River

is located about 90 km southwest of Oklahoma City, Oklaho‐
ma. The climate in the region is sub‐humid to semi‐arid, with
an average annual precipitation of about 795 mm, based on
data collected by the USDA‐ARS from 1961 to 2000. Topog‐
raphy of the watershed is characterized by gently to moder‐
ately rolling hills, and the soil types primarily consist of silt
loams, loams, fine sandy loams, and sandy loams. Land use
types include rangeland and pasture (59%), cropland (28%),
forest (6%) and miscellaneous (7%, including urban, aban‐
doned oil fields, farmsteads, ponds) (Allen and Naney, 1991).
The watershed has 13 NRCS flood‐retarding structures that
control drainages on the Little Washita River that range in
size from 249 to 1974 ha and consist of storage capacities
ranging in size from 2.0 × 105 to 1.7 × 106 m3. These struc‐
tures delay and reduce peak surface flows and modify subsur‐

face flows. They also lead to small increases in average
annual evaporation due to a larger percentage of open water
in the watershed.

Walnut Gulch in Arizona
Located about 115 km southeast of Tucson, Arizona, the

Flume 9 subwatershed in Walnut Gulch comprises 24 km2

near the historical western town of Tombstone. With a mean
annual precipitation of about 325 mm, the climate of the re‐
gion is considered semi‐arid. Soils are generally well‐
drained, calcareous, gravelly loams with large percentages of
rock and gravel at the surface (Gelderman, 1970). Watershed
relief ranges from 1250 to 1585 m, and the topography con‐
sists of low undulating hills to mountains. Streamflow results
from high‐intensity rainstorms, primarily during the summer
months, and is subject to substantial transmission losses in
the channel beds and banks. Shrub canopy cover ranges from

Table 1. Physical and data resolution characteristics of the five USDA‐ARS study watersheds.
Mahantango Creek,

Pennsylvania
Little River,

Georgia
Little Washita River,

Oklahoma
Walnut Gulch,

Arizona
Reynolds Creek,

Idaho

Topography Rolling hills in non‐
glaciated ridge 

and valley

Flat floodplains to 
gently sloping 

uplands

Gently to moderately 
rolling hills

Low undulating hills 
to mountains

Flat valley to steep 
mountain slopes

Avg. annual 
precipitation

1100 mm 1215 mm 795 mm 325 mm 250 to 1100 mm

Avg. annual 
streamflow

393 mm 347 mm 130 mm 7.6 mm 223 mm

Land use 26% cropland, 
38% pasture, 
34% forest, 

2% farmstead

30% cropland, 
2% rangeland and pasture, 
65% forest, 2% wetlands, 

1% miscellaneous

28% cropland, 
59% rangeland and 
pasture, 6% forest, 
7% miscellaneous

83% rangeland, 
12% forest, 
5% urban

6% irrigated cropland, 
94% rangeland and 

forest

Soil Loams with near‐stream 
fragipans; highly 
fractured bedrock

Fragipans underlying 
quick‐draining sands 

and sandy loams

Silt loams, loams, 
fine sandy loams, 
and sandy loams

Well‐drained, calcareous, 
gravelly loams; 

frequent surface rocks

Mainly steep, shallow, 
rocky soils; some deep, 

rock‐free loams

Data resolution 10 m 30 m 30 m 10 m 30 m

Land use data Aerial photograph Landsat Landsat Landsat Landsat

NRCS soil data SSURGO STATSGO STATSGO SSURGO STATSGO
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30% to 40%, and grass canopy cover ranges from 10% to
80%. Land cover on Walnut Gulch is comprised of rangeland
(83%), forest (12%), and urban (5%). Land is primarily de‐
voted to cattle grazing, with mining, limited urbanization,
and recreation making up the remaining uses (Renard et al.,
1993).

Reynolds Creek in Idaho
The 239 km2 Reynolds Creek watershed is located about

80 km southwest of Boise, Idaho, and exhibits a considerable
degree of spatial heterogeneity. Topography of the watershed
varies from a broad, flat alluvial valley to steep, rugged
mountain slopes, with a range in elevation from 1101 to
2241�m (Seyfried et al., 2000). There is more than a four‐fold
increase in average annual precipitation on the watershed,
ranging from about 250 to more than 1100 mm. Perennial
streamflow is generated at the highest elevations in the south
and northwest parts of the watershed, where deep, late lying
snow packs are the source for most water (Seyfried et al.,
2000). Although much of the watershed has steep, shallow,
rocky soils, there are areas of deep, loamy soils that are rock‐
free. Land cover on Reynolds Creek consists of rangeland
and forest communities of sagebrush, greasewood, aspen,
and conifers (94%) and irrigated cropland (6%).

WATERSHED DELINEATION
For this investigation, subbasins were delineated to ac‐

count for variations in topography and precipitation based on
the spatial distribution of precipitation gauges in each wa‐
tershed and to account for the impact of the NRCS flood‐
retarding structures on hydrologic response in the Little
Washita. SWAT hydrologic response units (HRUs) provide
an all‐inclusive division of a watershed such that watershed
characteristics  (soils, land use, topographic, and climatic
data) within each HRU can be assumed uniform for the study
purposes. Because the watersheds differ in all four of the
characteristics  involved in determining HRUs, HRUs were
defined by a threshold of characteristic similarity instead of
by equality in area or GIS cell count. Thus, the HRU thresh-

old was based on a land use and soil type covering an area of
at least 5% and 20%, respectively, within any given subbasin.
As a result, the HRU sizes vary within and among watersheds
(table 2). While three of the watersheds (Mahantango, Little
River, and Reynolds Creek) have a similar number of GIS
cells per HRU, the Mahantango data resolution was 10 m
(table 1), and this is the smallest watershed. Thus, the average
area per HRU for this watershed is much lower than the oth‐
ers. Little Washita has the most subbasins because of the
flood‐retarding structures and, thus, small HRUs relative to
other large watersheds. Walnut Gulch, the second smallest
watershed, does not have a lot of variation in land use and
soils. Consequently, its HRUs are, on average, about the same
size as those of the two largest watersheds. Several studies
have shown that HRU size has little impact on hydrologic re‐
sults (Jha et al., 2004; Arabi et al., 2006; Migliaccio and
Chaubey, 2008). It should be kept in mind, however, that the
same studies have shown that HRU sizes do impact water
quality results.

Although there have been minor changes in land use over
time on the Little River and Little Washita River watersheds, re‐
cords are not available for either of these watersheds to accu‐
rately denote the actual year‐to‐year changes that have
occurred. Moreover, testing conducted with SWAT on the Little
Washita River watershed showed that changes in land use as in‐
dicated by available records resulted in only very minor changes
in streamflow (Van Liew et al., 2007). Bosch et al. (2006) ex‐
amined the impact of changes in land use on hydrologic patterns
across the Little River watershed and found no significant rela‐
tionship between the two. Similarly, long‐term stream water
quality trends within the Little River watershed reflected no sig‐
nificant relationship between changes in land use and trends in
streamflow P and chloride concentrations (Feyereisen et al.,
2008). Few changes in land use types have occurred on the other
three ARS watersheds during the past few decades. For this
study it was therefore assumed that the respective land use types
on each of the watersheds remained constant for the period of
record simulated. Investigating the year‐to‐year variations was
beyond the scope of this work.

Table 2. Size and subdivision characteristics for the studied subwatershed of the five USDA‐ARS watersheds.
Mahantango,
Pennsylvania

Little River,
Georgia

Little Washita,
Oklahoma

Walnut Gulch,
Arizona

Reynolds Creek,
Idaho

Subwatershed WE‐38 B 526 Flume 9 Outlet
Area (km2) 7.2 329.9 159.9 23.7 239.0
GIS cells 72,023 366,605 177,643 237,430 265,503

Subbasins Count 7 40 70 10 60
Cells/subbasin 10,289 9,165 2,538 23,743 4,425
Area (ha/subbasin)

Mean 103 825 228 237 398
Median 107 793 195 236 382
Range 128 1320 614 132 875
Minimum 41 135 22 166 79
Maximum 168 1456 636 298 953

HRUs[a] Count 44 227 353 17 162
Cells/HRU 1,637 1,615 503 13,966 1,639
Area (ha/HRU)

Mean 16 145 45 140 148
Median 11 97 30 130 108
Range 59 659 243 249 848
Minimum 2 9 3 43 2
Maximum 61 669 245 292 850

[a] HRU = SWAT hydrologic response unit.
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EVALUATED PARAMETERS
Sixteen calibration parameters that govern precipitation

runoff processes in SWAT were selected for sensitivity and
uncertainty analyses. These were the same parameters that
were calibrated in an earlier study to investigate SWAT's per‐
formance on the five watersheds (Van Liew et al., 2007).
Model parameters were grouped into four categories: (1) ba‐
sin, (2) snow accumulation/melt, (3) surface, and (4) subsur‐
face responses:

Basin Response Parameters. Channel hydraulic conduc‐
tivity (CH_K2) governs movement of water from streambed
to subsurface for ephemeral or transient streams. Surface run‐
off lag time (SURLAG) provides a storage factor in the model
for watersheds in which runoff generally takes longer than
one day to reach a subbasin outlet.

Snow Accumulation and Melt Parameters. Snowfall
temperature (SFTMP) is the mean air temperature at which
precipitation is equally likely to be rain, snow, or freezing
rain. Snowmelt base temperature (SMTMP) defines the snow
pack temperature above which snowmelt will occur.
SMFMX and SMFMN are melt factors for snow on June 21
and December 21 in the Northern Hemisphere, respectively.
These two factors allow the rate of snowmelt to vary through
the year as a function of snow pack density. The snow pack
temperature lag factor (TIMP) controls the impact of the cur‐
rent day's air temperature on snow pack temperature.

Surface Response Parameters. The runoff curve number
(CN2) is used to compute runoff depth from total rainfall
depth. It is a function of watershed properties that include soil
type, land use and treatment, ground surface condition, and
antecedent moisture condition. The soil evaporation com‐
pensation factor (ESCO) adjusts the depth distribution of
evaporation from soil to account for the effects of capillary
action, crusting, and cracking. The available soil water ca‐
pacity (SOL_AWC) is the volume of water that is available
for plant uptake when the soil is at field capacity. It is esti‐
mated by determining the amount of water released between
in situ field capacity and the permanent wilting point.

Subsurface Response Parameters. The groundwater
“revap” coefficient (GW_REVAP) controls the amount of
water moving from the shallow aquifer to the root zone as a
result of soil moisture depletion and the amount of direct
groundwater uptake from deep‐rooted trees and shrubs. The
threshold depth of water required in the shallow aquifer for
“revap,” i.e., water movement to the root zone or plant, to oc‐
cur is represented by REVAPMN. Likewise, GWQMN is the
threshold depth of water in the shallow aquifer required for
return flow to occur to the stream. The baseflow alpha factor
(ALPHA_BF), or recession constant, characterizes the
groundwater recession curve. This factor approaches one for
flat recessions and approaches zero for steep recessions. The
groundwater delay (GW_DELAY) is the time required for
water leaving the bottom of the root zone to reach the shallow
aquifer. The deep aquifer percolation parameter governs the
fraction of percolation from the root zone to the deep aquifer
(RCHRG_DP).

This study maintained a range in the calibrated values of
the curve number similar to those reported in the literature
(USDA‐SCS, 1986) by restricting the initial lower and upper
values for this parameter to ±5%. To properly account for the
release of surface runoff from a subbasin to the main channel,
the range in values of the surface runoff lag time was re‐
stricted from 0.5 to 10.0. Drawing from expert opinion, the

initial lower and upper values for available soil water capac‐
ity were restricted to ±20%, and the upper bound on ground‐
water delay time was lowered to 300. All other parameter
bounds were set as suggested by Van Griensven (2002) and
van Liew et al. (2007). These ranges are used in the sensitiv‐
ity analysis, the calibration process, and in the evaluation of
parameter uncertainty.

SWAT PARAMETER SENSITIVITY AND UNCERTAINTY

MODULES
The SWAT2005 sensitivity analysis component deter‐

mines the relative sensitivities of parameter changes to
changes in the objective function by using the OAT (one fac‐
tor at a time) design with Latin hypercube (LH) sampling
(Van Griensven, 2002). Latin hypercube sampling is based on
Monte Carlo simulation but uses a stratified sampling ap‐
proach to ensure that user‐specified ranges of the selected pa‐
rameters are fully and efficiently sampled. The OAT design
varies each parameter individually within the LH sampling
stratification.  Because only one parameter varies during each
model run, changes in model output can be unambiguously
attributed to the input parameter changed. In this study, pa‐
rameters were varied ±5% across their feasible value range.
Traditionally, researchers tend to estimate model sensitivity
by evaluating the impact of parameter change on model out‐
put. However, as the ultimate goal of this study is to look at
sensitivity on model performance, sensitivity was evaluated
by the change in the objective function, which is a measure
of how well the model reflects the natural system.

SWAT2005 also includes “ParaSol with Uncertainty
Analysis,” a multi‐objective, automated calibration proce‐
dure that estimates parameter uncertainty (Van Griensven
and Bauwens, 2003). The calibration procedure is based on
the shuffled complex evolution algorithm (SCE) developed
by Duan et al. (1993) to address major characteristics of
hydrologic model calibration projects. The SCE has been
widely used in watershed model calibration and other areas
of hydrology and has been generally found to be robust, effec‐
tive, and efficient (Cooper et al., 1997; Duan, 2003). The ob‐
jective function used in the procedure is an indicator of the
deviation between a measured and a simulated series (Van
Griensven and Bauwens, 2003).

Following from the work of the previous watershed study
(Van Liew et al., 2007), this study employed the sum of
squares of residuals (simulation output minus observed flow)
method to minimize streamflow. Van Liew et al. (2007)
showed that the SCE optimization procedure did a fairly good
job in matching measured and simulated streamflow. For four
out of the five watersheds, percent bias (PBIAS) was esti‐
mated to within +15%. Model performance was 0.8 or above
at the monthly time scale based on the Nash‐Sutcliffe coeffi‐
cient of efficiency (NSE; Nash and Sutcliffe, 1970).

The analysis for describing parameter uncertainty in
SWAT2005 divides model simulations that have been per‐
formed by the SCE optimization into “good” and “not good”
simulations (Van Griensven, 2002). Two separation tech‐
niques are available for grouping model simulations. Both
techniques are based on a threshold value for the objective
function to select “good” simulations by considering all the
simulations that give an objective function below this thresh‐
old. The threshold can be defined by chi‐squared statistics
where the selected simulations correspond to the confidence
region, or by Bayesian statistics that are able to point out the
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high probability density region for the parameters or model
outputs.

Results of the parameter uncertainty analysis process were
then used to tabulate those parameter value ranges associated
with “good simulations,” i.e., simulations with modeled
streamflow values within the confidence region defined by
chi‐squared statistics at the 97.5% probability level. To facil‐
itate comparisons of parameter uncertainty by categories and
watershed, each final parameter range was normalized by its
initial range to create a percentage. The size of the normal‐
ized parameter range indicates the ability for fluctuation in
that parameter value while still achieving a “good” simula‐
tion, with a wider range corresponding to more flexibility. On
a graph, the location of the normalized range within the 0 to
1 range indicates the location of the initial parameter range
in which the ideal values lie. A parameter value at either edge
of the range may indicate that the initial user‐selected range
could be improved.

The optimal simulation run and confidence interval due to
parameter uncertainty were then graphed on a monthly basis
with the measured data for visual comparison. As the confi‐
dence interval is defined by the threshold statistic on the ob‐
jective function, it is important to also evaluate representa-
tion of the system over time.

RESULTS AND DISCUSSION
PARAMETER SENSITIVITY

Considering the sensitivity data in terms of the mean
change in the objective function provides a relatively easy
comparison to the parameter change. For example, when
SURLAG is changed by 5%, it yields a 2.37% change in the
objective function, or a 0.5 to 1 ratio (table 3). Evaluated in
this way, changing SURLAG caused the most change to the
objective function across all watersheds (table 3). Little Riv‐
er, which is humid with substantial lateral flow just below the
surface, was largely influenced by SURLAG. The other basin
parameter, CH_K2, also had a measurable impact for the
larger watersheds. Surface parameters were also sensitive
across all watersheds, particularly in the more arid wa‐
tersheds (Little Washita and Walnut Gulch). Snow‐based
processes were most affected by the mean air temperature

driving accumulation (SFTMP) in Reynolds Creek, perhaps
due to the wide range of elevation across the watershed. Ma‐
hantango, with more rolling hills and less climatic extremes
in the winter, exhibited sensitivity to the snow melt parame‐
ters. Among the six groundwater parameters investigated in
this study, ALPHA_BF and GWQMN were somewhat sensi‐
tive, particularly for Reynolds Creek.

PARAMETER UNCERTAINTY

The ranges of parameter values present in “good” solu‐
tions, normalized by the user‐input ranges, were ordered ac‐
cording to the four categories described earlier in this article
(fig. 2). A parameter covering the full range from 0 to 1.0 im‐
plies that the value of that variable, within the input ranges,
has little impact on the model performance. In contrast, a
very short range suggests the values of the variable necessary
to achieve “good” model performance. The range of SUR‐
LAG was the narrowest among all parameters for all wa‐
tersheds except Walnut Gulch, which has a flashy storm
response and large transmission losses. Accordingly, CH_K2
has a narrower range for Walnut Gulch than for the other wa‐
tersheds. The narrower the range, the closer the parameter
value must be to that of the optimal run in order to maintain
a good objective function value. In general, parameter ranges
seem to be relatively small when it is reasonable that a wa‐
tershed would be sensitive to a particular parameter; other‐
wise, the range is essentially the entire input range. For
example, the southern watersheds are not sensitive to snow
process parameters, as expected, so the range of those param‐
eters is 100% of the input range.

Although a parameter may be sensitive for numerous wa‐
tersheds, the optimal value of the parameter may vary consid‐
erably among watersheds. For example, the stream flow
objective function for all five watersheds is sensitive to the
curve number (CN2), as shown in table 3 and by the relatively
short bars in figure 2. But the optimal value for CN2 is near
the lower bound of the user‐defined range for the eastern two
watersheds and near the upper bound for the western three
watersheds, as shown by the location of the bars in figure 2
in this article and by table 4 in Van Liew et al. (2007). Re‐
ynolds Creek watershed is not nearly as sensitive to surface
runoff lag time (SURLAG) as are the other four watersheds,

Table 3. Mean change in objective function due to 5% change in parameter value (standard deviation in parentheses; values <0.1 not shown).

Parameter
Mahantango,
Pennsylvania

Little River,
Georgia

Little Washita,
Oklahoma

Walnut Gulch,
Arizona

Reynolds Creek,
Idaho

Basin SURLAG 2.37 (2.9) 6.48 (3.0) 2.50 (2.6) 2.90 (1.3) 2.71 (2.9)
CH_K2 ‐‐ 0.30 0.16 0.66 0.64

Snow SMFMX 1.60 (0.4) ‐‐ 0.17 ‐‐ 0.72
SMFMN 0.21 ‐‐ ‐‐ ‐‐ 0.44
SFTMP 0.52 (0.4) ‐‐ ‐‐ ‐‐ 1.71 (1.3)
SMTMP 1.03 ‐‐ ‐‐ ‐‐ 0.48

TIMP 1.08 (0.3) ‐‐ 0.11 ‐‐ 0.43

Surface ESCO 1.43 1.54 (0.4) 6.32 (3.6) 6.80 (2.1) 0.22
CN2 2.34 1.33 1.14 4.84 (0.9) 0.42

SOL_AWC 0.35 0.83 1.39 (0.3) 2.96 (0.5) 0.55

Subsurface ALPHA_BF ‐‐ 0.12 0.22 0.46 2.14 (1.2)
GWQMN ‐‐ 0.33 (0.3) ‐‐ 0.75 (0.8) 0.57 (0.7)

GW_REVAP ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
REVAMPN ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

GW_DELAY ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
RCHRG_DP ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
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Figure 2. Size and location of the normalized, user‐defined range for each parameter of all simulations falling within the confidence interval of the opti‐
mal (best calibrated) simulation.

but its optimal value and “good” parameter range for SUR‐
LAG are on the high side of the user‐defined bounds instead
of the low side. The evaporation coefficient factor (ESCO)
varies widely among all five watersheds in both location and
size of the optimal value range. Based on “good” simulations
performed by watershed, Mahantango exhibited the narrow‐
est percent of range in parameter uncertainty across the elev‐
en non‐snow parameters, while Walnut Gulch and Reynolds
Creek produced the widest (fig. 2). These examples highlight
the importance of considering regional characteristics in cali‐
brating a watershed.

When percent of range in parameter uncertainty was aver‐
aged by parameter grouping (basin, snow, surface, and sub‐
surface) within each watershed, the basin, snow (for
watersheds with snow), and surface groups appeared to be in‐
dependent of average annual long‐term precipitation values
(fig. 3). However, a strong inverse relationship (r2 = 0.94)
across watersheds between average annual precipitation and
average percent of range for the subsurface parameters sug‐
gests a linear increase in the importance of subsurface param‐
eters for wetter climatic regimes. As the annual precipitation
value increases across the watersheds (fig. 3), the monthly
precipitation values tend to become more uniform and the
evapotranspiration‐to‐precipitation  ratio becomes less ex‐
treme (fig. 4). The wetter watersheds experience groundwa‐
ter recharge and subsurface water movement more constantly
throughout the year than the drier watersheds. Thus, both
above ground and subsurface parameters must be within ap‐

propriate ranges for “good” model performance. In contrast,
the above ground processes of the drier watersheds, driven by
intense, less consistent precipitation and high ratios of evapo‐
transpiration to precipitation, likely overwhelm the subsur‐
face processes of SWAT, a model that is driven by
precipitation and infiltration excess as opposed to saturation
excess.

Figure 3. Relationship between precipitation and average sensitivity of
the four parameter groupings for the five USDA‐ARS watersheds.
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Figure 4. Long‐term average monthly precipitation (bars) and evapotranspiration (lines) for the five USDA‐ARS watersheds (USDA‐NRCS, 1999;
USDA‐NRCS, 2000a, 2000b; WRCC, 2006a, 2006b, 2006c, 2006d; Basara, 2009).

HYDROGRAPH PREDICTION UNCERTAINTY
Figure 5 shows monthly measured streamflow, “best pa‐

rameter” simulated streamflow, and hydrograph prediction
uncertainty associated with the simulations for which the ob‐
jective function values were within the confidence interval of
the watershed optimum objective function value. This pre‐
diction uncertainty reflects only variation due to changes in
parameter value, propagated through the model. However,
the “good” simulations reasonably capture the mid‐range to
high‐flow regions of the hydrograph, as indicated by narrow
hydrograph bounds in these regions. Model simulations per‐
formed with the Sacramento soil moisture accounting model
(SAC‐SMA) also showed similar results (Gupta et al., 1999).
Less satisfactory simulations were obtained for recession
portions of the hydrograph (primarily governed by subsur‐
face parameters), as indicated by the relatively wider bracket
bounds for each of the watersheds. Wider bounds around the
recession portions of the hydrograph seem to be consistent
with results previously described that show narrower percent
ranges for model parameters in the surface runoff and basin
categories than in the subsurface runoff category.

Average monthly lower and upper bounds on streamflow as‐
sociated with parameter uncertainty confidence interval are pre‐
sented in table 4. When expressed as a percent departure from
the average monthly discharge simulated with the “best parame‐
ter” set, the range is narrowest for Mahantango (‐11.4% to
+14.5%), which is the smallest subwatershed with the overall
second to lowest monthly average discharge rate. However, Ma‐
hantango streamflow varies seasonally with snowmelt and regu‐
lar precipitation. Walnut Gulch, the second smallest watershed,

has the lowest monthly average flow rate by an order of magni‐
tude and the widest range of variation in hydrograph uncertain‐
ty, particularly for high flows (‐18.2% to +86.7%). This is
further demonstration of the need for careful consideration, and
perhaps model adjustments, when evaluating a watershed with
long‐term low flows and flashy storm responses. For the re‐
maining three watersheds, the average percent departure in hy‐
drograph uncertainty from the “best parameter” average
monthly streamflow was within ±25%.

SUMMARY AND CONCLUSIONS
This study evaluated parameter sensitivity and uncertain‐

ty, as calculated in the 2005 version of the Soil and Water As‐
sessment Tool, on five USDA‐ARS experimental
watersheds. These watersheds, three southern and two north‐
ern, represent a range in climatic, physiographic, and land
use conditions present in the U.S. Sixteen parameters that
govern basin, snow accumulation/melt, surface, and subsur‐
face response in the model were evaluated. Latin hypercube
one‐factor‐at‐a‐time analysis was employed to evaluate pa‐
rameter sensitivity in the model. The mean square error
method that matches a simulated time series to a measured
series was used as the optimization scheme for model calibra‐
tions. The shuffled complex evolution algorithm was
employed in SWAT to calibrate each watershed, and a 97.5%
threshold value defined by chi‐squared statistics was used to
determine parameter uncertainty estimates from “good” and
“bad” simulations.

Table 4. Average monthly flow rates for runs in which the modeled objective function
values were within the confidence interval of the optimal (best calibrated) simulation.

Area
(km2)

Time
Series

Average Discharge (m3 s‐1) Departure from
Optimum (%)

%
Bias[a]

Monthly
Nash‐Sutcliffe
Coefficient[a]Measured

Modeled
Optimum

Modeled
Min.

Modeled
Max. Min. Max.

Mahantango (WE‐38) 7 1/97 to 12/00 0.0827 0.0828 0.0733 0.0948 ‐11.4 14.5 0.07 0.84
Little River (B) 330 1/97 to 12/02 2.854 2.457 1.934 3.018 ‐21.3 22.8 ‐13.92 0.90

Little Washita (526) 160 1/80 to 12/85 0.610 0.523 0.396 0.652 ‐24.2 24.9 ‐14.36 0.90
Walnut Gulch (Flume 9) 24 1/68 to 12/72 0.0072 0.0087 0.0071 0.0162 ‐18.2 86.7 24.14 0.83
Reynolds Creek (outlet) 239 1/68 to 12/72 0.677 0.709 0.538 0.859 ‐24.0 21.2 4.75 0.80

[a] Between measured and modeled values.
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Figure 5. Time series of the parameter uncertainty around the optimal
solution and the measured data for the five USDA‐ARS watersheds.

All watersheds were particularly sensitive to response sur‐
face lag time, while the two southwestern watersheds were
sensitive to the soil evaporation factor and the available water
capacity of the soil. The northern, mountainous watershed on
the arid steppe was more sensitive to snowfall temperature
and the baseflow recession constant but less sensitive to snow
melt parameters than the northern, rolling watershed in the
temperate continental region.

Results of the parameter uncertainty analysis followed a
pattern similar to that obtained for the sensitivity analysis. Of
the 16 parameters investigated, the “good” parameter ranges
for curve number and surface runoff lag time were the nar‐
rowest, on average. The location of the ranges for sensitive
parameters,  such as the curve number and soil evaporation
coefficient, varied widely among the watersheds; in some
cases the optimal solution value for the parameter was on the
upper end of the user‐defined range, and in other cases it was
in the middle or on the lower end. The threshold depth of wa‐
ter in the shallow aquifer for “revap” to occur, the groundwa‐

ter “revap” coefficient, and the groundwater delay factor, on
the other hand, exhibited the widest percent of range solution
space. The “good” ranges for parameters governing basin and
surface responses were generally about one‐half as wide as
for those parameters governing snow accumulation/melt or
subsurface runoff.

Maximum widths of the hydrograph uncertainty bounds
resulting from the confidence interval around the objective
function varied among watersheds, dependent, perhaps, on
watershed size and stream discharge rate as well as regional
conditions. However, widths were often widest during event
recessions or low flows when measured values may also have
had sizable variation. While this study has shown the impact
of regional characteristics on parameter calibration and un‐
certainty when using SWAT, modelers should also be aware
of other types of variability, such as temporal fluctuations in
climate,  measurement frequency and technique, spatial vari‐
ability within a region, and model process uncertainty, which
may play key roles for the region or question of interest.
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